nice-html

This is a library for HTML templating in the same vein as blaze-html, lucid, or type-of-html, which all provide HTML EDSLs for Haskell.

Overview

WIP. Check out Text.Html.Nice.Writer for the simplest, most recommendedest, monadic interface.

Example

{-# LANGUAGE OverloadedStrings #-}
module TodoList where
import           Data.Text                   (Text)
import           Text.Html.Nice              ((:$) (..), Attr (..), Builder,
                                              FastMarkup, Render (..))
import           Text.Html.Nice.Writer
import           Text.Html.Nice.Writer.Html5

data Todo = Todo
  { todoDate :: Text
  , todoText :: Text
  }

todos :: [Todo]
todos =
  [ Todo "october 25 2017" "write todo list <html>asdf</html>" -- escaped
  , Todo "october 26 2017" "write another todo list"
  ]

template :: FastMarkup ([Todo] -> FastMarkup Text)
template = compile $ do
  doctype_
  html_ $ do
    head_ $ title_ "Todo list"
    body_ $ do
      h1_ "Todo list"
      stream $ div_ ! "class" := "todo-item" $ do
        text "\n<script></script>\n" -- this gets escaped
        b_ (dynamic todoText)
        " ("
        dynamic todoDate
        ")"

test :: Monad m => m Builder
test = r (template :$ todos)

Comparison

  1. Unlike blaze-html and lucid: nice-html has a distinct template compilation phase, with a different type for compiled markup.

  2. Unlike type-of-html: this compilation is done explicitly at runtime. This increases runtime, but enables more complex transformations. Namely nice-html can compile escaped text. nice-html also makes no attempt to ensure correct HTML.

  3. Unlike each of them, nice-html parameterises its templating type with the type for the data you use in the template. This enables nice-html to compile the static parts of the dynamic parts of a template instead of just the top-level stuff.

  4. Like lucid, nice-html has a valid Monad interface (actually, two).

  5. Unlike lucid, nice-html does not have a monad transformer. The only state that nice-html can currently keep track of is an increasing Int counter, intended to be used to keep track of the id of elements for use with JavaScript. But even this doesn’t really work, because it doesn’t support repeated elements (e.g. produced by stream).

    This makes it harder to write templates for nice-html, because you generally can’t/shouldn’t use the familiar mapM_ etc. for dynamic data as you might if you were using lucid or blaze.

Benchmark results (as of 0.3.0)

Memory (includes memory overhead compilation… I think)

nice-html-0.3.0: benchmarks
Running 2 benchmarks...
Benchmark mem: RUNNING...
OK: nice = blaze
OK: nice = lucid
OK: lucid = blaze

Case         Allocated  GCs
10/blaze       562,152    1
10/nice        297,544    0
10/lucid       230,304    0
100/blaze    4,520,016    8
100/nice     2,952,184    5
100/lucid    1,855,256    3
1000/blaze  44,096,616   85
1000/nice   29,500,096   57
1000/lucid  18,071,008   32
Benchmark mem: FINISH

Runtime

Benchmark perf: RUNNING...
benchmarking 10/blaze
time                 80.13 μs   (79.59 μs .. 80.73 μs)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 80.41 μs   (80.08 μs .. 80.83 μs)
std dev              1.166 μs   (951.2 ns .. 1.531 μs)

benchmarking 10/nice
time                 34.09 μs   (33.88 μs .. 34.28 μs)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 34.08 μs   (33.93 μs .. 34.25 μs)
std dev              542.8 ns   (477.2 ns .. 619.9 ns)
variance introduced by outliers: 12% (moderately inflated)

benchmarking 10/lucid
time                 57.40 μs   (57.03 μs .. 57.75 μs)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 57.44 μs   (57.15 μs .. 57.67 μs)
std dev              856.7 ns   (763.9 ns .. 960.4 ns)

benchmarking 100/blaze
time                 660.8 μs   (657.2 μs .. 664.9 μs)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 661.6 μs   (659.1 μs .. 664.3 μs)
std dev              8.748 μs   (7.441 μs .. 10.24 μs)

benchmarking 100/nice
time                 336.9 μs   (334.7 μs .. 338.9 μs)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 334.3 μs   (333.2 μs .. 336.1 μs)
std dev              4.685 μs   (3.229 μs .. 7.873 μs)

benchmarking 100/lucid
time                 514.4 μs   (509.5 μs .. 519.7 μs)
                     0.999 R²   (0.999 R² .. 1.000 R²)
mean                 507.1 μs   (504.6 μs .. 510.4 μs)
std dev              9.897 μs   (7.573 μs .. 14.83 μs)
variance introduced by outliers: 11% (moderately inflated)

benchmarking 1000/blaze
time                 6.355 ms   (6.324 ms .. 6.380 ms)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 6.424 ms   (6.400 ms .. 6.453 ms)
std dev              79.56 μs   (62.81 μs .. 106.2 μs)

benchmarking 1000/nice
time                 3.356 ms   (3.348 ms .. 3.366 ms)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 3.376 ms   (3.369 ms .. 3.385 ms)
std dev              24.95 μs   (20.64 μs .. 29.55 μs)

benchmarking 1000/lucid
time                 4.885 ms   (4.850 ms .. 4.921 ms)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 4.868 ms   (4.857 ms .. 4.881 ms)
std dev              36.95 μs   (31.34 μs .. 43.37 μs)

Benchmark perf: FINISH